Check for updates

Blood 142 (2023) 6554-6555

The 65th ASH Annual Meeting Abstracts

ONLINE PUBLICATION ONLY

642.CHRONIC LYMPHOCYTIC LEUKEMIA: CLINICAL AND EPIDEMIOLOGICAL

A Real-World Study of Zanubrutinib Treatment in Chronic Lymphocytic Leukemia and Small Lymphocytic Lymphoma

Huayuan Zhu¹, Yi Xia, MDPhD¹, Yi Miao, MD¹, Shuchao Qin¹, Wei Wu¹, Tonglu Qiu¹, Li Wang¹, Lei Fan, MD¹, Wei Xu, MDPhD¹, Jianyong Li, MD¹

¹Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China

Background:

Zanubrutinib, a second-generation non-covalent Bruton's Tyrosine Kinase inhibitor (BTKi), with better BTK specificity, and fewer off-target effects. Zanubrutinib has demonstrated the confirmed effectiveness and safety in clinical trials such as SE-QUOIA and ALPINE in chronic lymphocytic leukemia and small lymphocytic lymphoma (CLL/SLL), and earlier studies showed its efficacy and safety profile of zanubrutinib monotherapy in the real world. Meanwhile, more valuable insights hope to be gained on zanubrutinib treatment in Chinese CLL/SLL patients (pts) outside of the clinical trial setting. This report provides some outcomes evaluated in a real-world study.

Aims:

This study further evaluated the effectiveness and safety of zanubrutinib monotherapy/combination treatment in Chinese CLL/SLL pts in a real-world setting.

Methods:

CLL/SLL pts who received zanubrutinib monotherapy/combination treatment for at least 3 months from Aug. 2017 to Jul. 2023 were enrolled from Jiangsu Province Hospital. The primary outcome was progression free survival (PFS). Baseline characteristics were also collated.

Results:

77 pts were analyzed in all. Zanubrutinib was administered orally at 160 mg, twice daily (BID), mono or combined. Among the monotherapy pts, 20 (35.1%) pts were treatment naïve (TN) and 37 (64.9%) pts were refractory/relapsed (R/R). Among the combination treatment pts, 14 (70.0%) pts were TN and 6 (30.0%) pts were R/R. Baseline characteristics were shown in Table 1.

The median follow-up time was 31.8 months, and the median PFS was not reached in the entire cohort. The 12-month PFS rate was 95.8% (95%CI 91.3-100.0%) while the 24-month PFS rate was 90.9% (95%CI 84.2-98.2%) (Figure A). After stratified by line of therapy in monotherapy, the estimated 12-month PFS rates of TN and R/R zanubrutinib monotherapy pts were 100.0% (95%CI 100.0-100.0%) and 91.3% (95%CI 82.3-100.0%) (Figure B). The estimated 24-month PFS rates of TN and R/R zanubrutinib monotherapy pts were 93.8% (95%CI 82.6-100.0%) and 84.9% (95%CI 73.5-98.1%).

4 (5.2%) pts interrupted treatment due to AE. 2 pts were TN and 2 pts were R/R. 2 pts received zanubrutinib monotherapy and 2 pts received combination treatment. The AEs included hemoptysis (1, 1.3%), platelet hemoglobin reduction and atrial fibrillation (1, 1.3%), bleeding points in both lower limbs (1, 1.3%), rash and edema (1, 1.3%). All treatment-interrupted pts still received zanubrutinib after interruption by the latest follow-up.

17 (22.1%) pts experienced treatment discontinuation due to progressive disease (PD) or transformation. No pts discontinued zanubrutinib treatment due to AE. PD was the most common reason for treatment discontinuation. 13 (16.9%) pts experienced PD and 4 (5.2%) pts experienced transformations.

S ummary/Conclusion:

Zanubrutinib shows good efficacy in Chinese CLL/SLL pts in the real-world study. Incidence of AE was low, and no treatment discontinued due to AE, revealing a good safety of zanubrutinib. PD was the main reason for treatment discontinuation. Therefore, the effectiveness and safety of zanubrutinib have been validated in the real world, consistent with clinical trials.

Disclosures No relevant conflicts of interest to declare.

Baseline characteristics	N = 77
Male, n (%)	53 (68.0%)
Median age (range), years	63 (29-84)
ECOG, %	
0	29.63%
1	70.37%
CLL, n (%)	58 (74.4%)
SLL, n (%)	20 (25.6%
Bulky disease ≥5 cm,%	25.9%
β2-microglobulin >3.5 mg/L	64.7%
Complex karyotype	14.0%
Unmutated IGHV gene	60.6%
del(17p)	20.3%
del(11q)	21.4%
del(13q)	40.0%
TP53 aberration	17.4%
Patients with Treatment, n (%)	
Naïve	34 (44.2%)
R/R	43 (55.8%)
Zanubrutinib therapy, n (%)	
Monotherapy	57 (74.0%)
+ Anti-CD20-based chemoimmunotherapy	9 (45.0%)
+ Anti-CD20 antibody + BCL2 inhibitor	8 (40.0%)
+ BCL-2 inhibitors	3 (15.0%)

Figure A PFS of the entire cohort

Figure 1

https://doi.org/10.1182/blood-2023-189110